LSTM(Long Short-Term Memory)은 순환 신경망(Recurrent Neural Network, RNN)의 한 종류로서, 시퀀스 데이터 (시계열 데이터, 텍스트 등)를 처리하기 위해 신경망 입니다. 이전에 배운 것들을 기억할 수 있도록 컴퓨터 의 “일기장” 을 바로 LSTM 이라고 할 수 있습니다. 즉, “일기장”을 찾아보면서 이전에 무슨 일이 있었는지 확인을 할 수 있으며 미래에 무슨 일이 일어날지 예측을 할 수 있습니다.
예를 들어, 작곡을 할 때, LSTM은 이전에 어떤 음이 나왔었는지 기억하고, 그 다음에 어떤 음이 나와야 할지 도와줍니다. 현재도 실제로 아티스트들은 이미 Ai를 통해 작곡을 하고 수 있습니다.
RNN(순환 신경망)은 이전 시점의 출력을 현재 시점의 입력에 포함시켜 정보를 순환시키는 구조를 가지고 있습니다. 하지만, 시퀀스가 길어질수록 이전 시점의 정보가 잘 전달되지 않는 ‘장기 의존성 문제’ 를 해결하기 위해 ‘셀 상태’라는 개념을 도입했습니다. 셀 상태는 LSTM 셀을 통과하는 동안 정보를 전달하는 ‘Information Highway’와 같습니다. LSTM에서는 게이트라는 구조를 통해 셀 상태에 어떤 정보를 추가하거나 제거할지 결정합니다. 이로 인해 LSTM은 긴 시퀀스에서도 이전 정보를 잘 기억하고 전달할 수 있습니다.
이 이미지는 LSTM “셀”의 내부 구조를 보여줍니다. 각각의 작은 박스는 다른 역할을 하는 “게이트”를 나타내고, 화살표는 정보가 어떻게 이동하는지를 보여줍니다. 이 중 가장 중요한 부분은 가장 위에 있는 수평선인 ‘셀 상태’입니다. 바로 “일기장”과 같은 역할을 하며 이를 통해 LSTM은 장기적인 정보를 저장하고 전달할 수 있습니다.
LSTM 활용사례
1. 자연어 처리(Natural Language Processing, NLP): LSTM은 텍스트 데이터에서 잘 작동하므로, 감성 분석, 텍스트 생성, 기계 번역 등 다양한 NLP 작업에 활용될 수 있습니다.
2. 시계열 예측(Time Series Prediction): LSTM은 시간에 따른 패턴을 학습할 수 있으므로, 주식 가격 예측, 날씨 예측 등 시계열 데이터의 예측에 사용될 수 있습니다.
3. 음성 인식(Speech Recognition): LSTM은 시간에 따라 변화하는 음성 신호를 처리하는 데 유용하므로, 음성 인식 기술에도 사용됩니다.
4. 음악 생성(Music Generation): LSTM은 시퀀스 데이터를 생성하는 데에도 사용될 수 있습니다. 이러한 특성을 이용해 음표의 시퀀스를 학습하고 새로운 음악을 생성하는 데에 사용될 수 있습니다.