Iris Dataset 에 대하여

Iris 데이터셋은 통계학과 머신러닝에서 자주 사용되는 데이터셋 중 하나입니다. 이 데이터셋은 붓꽃(Iris)의 품종을 분류하기 위한 데이터셋으로, 총 세 가지 품종(Setosa, Versicolor, Virginica)의 정보가 각각 50개씩 총 150개의 샘플로 구성되어 있습니다.

Iris 데이터셋

출처 : Wikipedia

각 샘플은 아래와 같은 네 가지 특징을 가지고 있습니다.

  1. 꽃받침(sepal)의 길이
  2. 꽃받침의 너비
  3. 꽃잎(petal)의 길이
  4. 꽃잎의 너비

Iris 데이터셋의 각 샘플은 이 네 가지 특징에 대한 수치와 그에 해당하는 붓꽃의 품종으로 구성되어 있습니다. 이 데이터셋은 각 특징들 간의 관계를 분석하거나, 머신러닝 모델을 학습시키는데 주로 사용됩니다. Iris 데이터셋은 다양한 머신러닝 알고리즘과 유용한 도구가 포함된 Scikit-learn 라이브러리를 통해서 가져 올수 있습니다.

from sklearn import datasets
iris = datasets.load_iris()

위 코드를 실행하면, Iris 데이터셋이 ‘iris’라는 변수에 저장되게 됩니다. 이후 ‘iris.data’로 데이터를, ‘iris.target’으로 타겟값(붓꽃의 품종)을 확인할 수 있습니다. pip 나 conda 명령어중 한가지 명령어를 통해 Scikit-learn을 설치할 수 있습니다.

pip 명령어 사용시

pip install scikit-learn

Conda 명령어 사용시

conda install scikit–learn

만약 설치 오류가 발생하거나 이미 ScyPi, Numpy 가 설치 되어 있다면 다음 명령어로 수행 합니다.

conda install -c conda-forge scikit-learn

참고로, Scikit-learn이 이미 설치되어 있다면, 별도로 Iris 데이터셋을 다운로드 받을 필요는 없습니다. 정상으로 설치가 되었다면 다음 소스를 통해 예제가 출력되는지 확인 해 봅니다.

from sklearn import datasets
 
# Iris 데이터셋 로드
iris = datasets.load_iris()
 
# 데이터셋에서 처음 5개의 샘플을 출력
print(“First 5 samples:”)
print(iris.data[:5])
 
# 해당 샘플들의 타겟값(붓꽃의 품종) 출력
print(“\nTarget of the samples:”)
print(iris.target[:5])

Leave a Comment